Limx->-1=cos((pi*x/2)/(1+(x)^1/3))
Решение


Limx->-1=cos((pi*x/2)/(1+(x)^1/3)) Решение

makoldinvyacheoxyw3a makoldinvyacheoxyw3a    3   03.01.2022 23:32    1

Ответы
llll23 llll23  03.01.2022 23:40

(см. объяснение)

Пошаговое объяснение:

\lim\limits_{x\to-1}\dfrac{\cos\left(\dfrac{\pi x}{2}\right)}{1+\sqrt[3]{x}}=\dfrac{\pi}{2}\lim\limits_{x\to-1}\dfrac{-\sin\left(\dfrac{\pi x}{2}\right)}{\dfrac{1}{3\sqrt[3]{x^2}}}=\dfrac{3\pi}{2}

/или/

\lim\limits_{x\to-1}\dfrac{\cos\left(\dfrac{\pi x}{2}\right)}{1+\sqrt[3]{x}}=\lim\limits_{y\to0}\dfrac{\cos\left(\dfrac{\pi (y-1)}{2}\right)}{1+\sqrt[3]{y-1}}=\lim\limits_{y\to0}\dfrac{\sin\left(\dfrac{\pi y}{2}\right)}{1+\sqrt[3]{y-1}}=\\=\lim\limits_{y\to0}\dfrac{\dfrac{\pi y}{2}\cdot\left(1-\sqrt[3]{y-1}+\sqrt[3]{(y-1)^2}\right)}{y}=\dfrac{\pi}{2}\lim\limits_{y\to0}\left(1-\sqrt[3]{y-1}+\sqrt[3]{(y-1)^2}\right)=\dfrac{3\pi}{2}

Задание выполнено!

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика