Lim_{n \to \infty} ( \sqrt{1-x} -3 )/3 lim_{n \to \ o} \frac{x}{ \sqrt{x+1} - 1 } lim_{n \to \ o} ( \sqrt{1+x} - \sqrt{1-x} )/x решить пределы без использования правила лопиталя

kuzyaevkuzyaev2 kuzyaevkuzyaev2    2   05.08.2019 13:10    1

Ответы
Omg55russ Omg55russ  03.10.2020 23:27
1) lim_{n \to \ o} \frac{x}{ \sqrt{x+1} - 1 } = \lim_{n \to \ o} \frac{x*( \sqrt{x+1}+1)}{( \sqrt{x+1}-1)( \sqrt{x+1}+1)}=
==\lim_{n \to \ o} \frac{x*( \sqrt{x+1}+1)}{x+1-1}=\lim_{n \to \ o} \frac{x*( \sqrt{x+1}+1)}{x}= \lim_{n \to \ o} ( \sqrt{x+1}+1)=
=\sqrt{0+1}+1=1+1=2

Вторую не знаю
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика