Сейчас мы разберем положительные и отрицательные числа. Сначала дадим определения, введем обозначения, после чего приведем примеры положительных и отрицательных чисел. Также остановимся на смысловой нагрузке, которую несут в себе положительные и отрицательные числа. Дать определение положительных и отрицательных чисел нам координатная прямая. Для удобства будем считать, что она расположена горизонтально и направлена слева направо.
Определение.
Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными.
Определение.
Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными.
Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.
Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.
Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел. Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330, да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212..., а отрицательных – числа , −11, −51,51 и −3,(3). В качестве примеров положительных иррациональных чисел можно привести число пи, число e, и бесконечную непериодическую десятичную дробь 809,030030003…, а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное значению числового выражения . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел.
Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5, и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.
Определение.
Числа со знаком плюс называют положительными, а со знаком минус – отрицательными.
Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.
Определение.
Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.
Таким образом, нуль как бы отделяет положительные числа от отрицательных.
Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).
Определение.
Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными.
Определение.
Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными.
Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.
Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.
Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел. Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330, да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212..., а отрицательных – числа , −11, −51,51 и −3,(3). В качестве примеров положительных иррациональных чисел можно привести число пи, число e, и бесконечную непериодическую десятичную дробь 809,030030003…, а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное значению числового выражения . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел.
Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5, и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.
Определение.
Числа со знаком плюс называют положительными, а со знаком минус – отрицательными.
Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.
Определение.
Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.
Таким образом, нуль как бы отделяет положительные числа от отрицательных.
Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).