Из точки Н на плоскость прямоугольника АБСД опущен перпендикуляр НБ. АД=7, НА = 24. Найдите НД​

ХЕЛП209 ХЕЛП209    3   06.03.2020 21:37    11

Ответы
ssssss22 ssssss22  06.03.2020 22:03

169=x^2+144

x^2=25

x=5

sina=5/13

Пошаговое объяснение:

тут получается два подобных треугольника

первый с катетами - 1,7 м и 4 шага, а второй х (высота столба) и 12 шагов (4+80) т.к.   эти треугольники подобны то их катеты относительны друг к другу и отсюда получаем 1,7 м /4 шага=х/12 шаг и отсюда выражаем х

х= 1,7 м * 3 = 5,1 метра высота  столб линейки и транспортира опускается перпендикуляр, соединяющипусть дан правильный треугольник abc, его проэкция на плоскость def

центр треугольника лежит на пересечении медиан.

ad=10,be=15,cf=17

пусть t - середина стороны bc, пусть середина g стороны ef

тогда tg=1\2*(be+cf)=1\2*(15+17)=16

медианы в точке пересечения делтся 2: 1, начиная от вершины

пусть ax: xt=2: 1

пусть dh: hg=2: 1

тогда xh=1\3*af+2\3*tg=1\3*10+2\3*16=14

ответ: 14 дмй конец катета с лучом острого угла.ба

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика