Из пункта А в пункт В велосипедист ехал со скоростью 11 км/ч, а назад со скоростью 9 км/ч. Определите среднюю скорость движения велосипедиста. (правильный ответ - 9,9 км/ч)
пусть расстояние между пунктами А и В равно S, тогда время в пути из пункта А в пункт В : t₁=S/V₁
время в пути из пункта В в пункт А: t₂=S/V₂;
общее расстояние: 2S;
средняя скорость равна отношению полного расстояния на полное время:
Vср=2S/(t₁+t₂); Vcp=2S/(S/V₁+S/V₂);
Vcp=2S₁/((S₁V₂+S₁V₁)/(V₁*V₂));
преобразовываем:
Vcp=2(V₁*V₂)/(V₁+V₂); (1)
Vcp=2*9*11/(9+11); Vcp=198/20=9,9 (км/ч)
вариант 2 (решаем в числах сразу)
Из уравнения (1) видим, что средняя скорость не зависит в нашем случае ни от расстояния, ни от времени ))). Поэтому примем расстояние от А до В равным, например 990 км (взято для удобства деления, а можно взять любое значение).
Пошаговое объяснение:
вариант 1 (составим уравнение)
пусть расстояние между пунктами А и В равно S, тогда время в пути из пункта А в пункт В : t₁=S/V₁
время в пути из пункта В в пункт А: t₂=S/V₂;
общее расстояние: 2S;
средняя скорость равна отношению полного расстояния на полное время:
Vср=2S/(t₁+t₂); Vcp=2S/(S/V₁+S/V₂);
Vcp=2S₁/((S₁V₂+S₁V₁)/(V₁*V₂));
преобразовываем:
Vcp=2(V₁*V₂)/(V₁+V₂); (1)
Vcp=2*9*11/(9+11); Vcp=198/20=9,9 (км/ч)
вариант 2 (решаем в числах сразу)
Из уравнения (1) видим, что средняя скорость не зависит в нашем случае ни от расстояния, ни от времени ))). Поэтому примем расстояние от А до В равным, например 990 км (взято для удобства деления, а можно взять любое значение).
S₁=S₂=990 км;
тогда время из А в В:
t₁=990/11=90 ч;
а время обратно:
t₂=990/9=110 ч;
всего затрачено на дорогу:
t=90+110=200 ч,
а суммарное расстояние:
S=990+990=1980 км;
и средняя скорость:
Vcp=1980/200=9.9 км/ч