Из пункта a в пункт b одновременно выехали два автомобиля, один со скоростью 60 км/ч, второй со скоростью 70 км/ч. через полчаса вслед за ними выехал мотоцикл со скоростью x км/ч, который через некоторое время обогнал оба автомобиля. 1)запишите в виде выражения: —скорость сближения мотоциклиста и первого автомобиля; —скорость сближения мотоциклиста и второго автомобиля.
Для начала, давай разберем условие по шагам:
1) Из пункта a в пункт b одновременно выехали два автомобиля, один со скоростью 60 км/ч, второй со скоростью 70 км/ч.
Здесь необходимо запомнить скорости обоих автомобилей: один движется со скоростью 60 км/ч, а второй - со скоростью 70 км/ч.
2) Через полчаса вслед за ними выехал мотоцикл со скоростью x км/ч.
Здесь нам дано, что мотоцикл выехал через полчаса после автомобилей. Мы пока не знаем его скорость и обозначим ее как x км/ч.
3) Мотоцикл обогнал оба автомобиля через некоторое время.
Это самое важное условие в задаче. После полчаса движения автомобилей мотоцикл стал обгонять их. Здесь нам не дана конкретная информация о времени обгона, поэтому обозначим его как t часов.
Теперь, когда мы разобрали условие, пошагово решим задачу:
1) Найдем расстояние между пунктами a и b, которое проехали автомобили за полчаса:
Расстояние = Скорость x Время
Для первого автомобиля: Расстояние1 = 60 км/ч x 0.5 ч = 30 км
Для второго автомобиля: Расстояние2 = 70 км/ч x 0.5 ч = 35 км
2) Поскольку мы не знаем точного времени обгона мотоциклом обоих автомобилей, мы должны посмотреть на их сближение.
Скорость сближения мотоциклиста и первого автомобиля = Скорость мотоциклиста - Скорость первого автомобиля
Скорость сближения мотоциклиста и первого автомобиля = x км/ч - 60 км/ч
Скорость сближения мотоциклиста и второго автомобиля = Скорость мотоциклиста - Скорость второго автомобиля
Скорость сближения мотоциклиста и второго автомобиля = x км/ч - 70 км/ч
3) Если мотоцикл обогнал оба автомобиля, то он проехал большее расстояние, чем каждый автомобиль отдельно.
Расстояние мотоцикла = Расстояние1 + Расстояние2
Расстояние мотоцикла = 30 км + 35 км = 65 км
4) Найдем время, за которое мотоцикл обогнал оба автомобиля:
Время обгона = Расстояние мотоцикла / Скорость мотоцикла
t = 65 км / x км/ч
t = 65/x часов
5) Так как расстояние обгона у обоих автомобилей одинаковое (равное расстоянию мотоцикла), мы можем составить уравнение:
Расстояние1 = Расстояние2 = Расстояние мотоцикла
30 км = 35 км = 65 км
6) Теперь у нас есть два уравнения:
x км/ч - 60 км/ч = 0
x км/ч - 70 км/ч = 0
7) Решим эти уравнения для нахождения значения x:
x - 60 = 0
x = 60 км/ч
x - 70 = 0
x = 70 км/ч
Итак, мы получили два ответа: скорость мотоцикла может быть равна 60 км/ч или 70 км/ч.
Я надеюсь, что мое объяснение было понятным и помогло тебе в решении задачи. Если у тебя возникли еще вопросы, не стесняйся задавать. Удачи в учебе!