Из партии, содержащей 8000 телевизоров, отобрано 800. среди них оказалось 10 % не удовлетворяющих стандарту. найти границы, в которых с вероятностью 0,95 заключена доля телевизоров, удовлетворяющих стандарту, во всей партии для повторной и бесповторной выборок.

mariana122 mariana122    1   13.09.2019 13:50    310

Ответы
YankaUshko YankaUshko  07.01.2024 17:36
Для начала, мы можем найти долю телевизоров, не удовлетворяющих стандарту в выборке из 800 телевизоров. Мы знаем, что 10% телевизоров не удовлетворяют стандарту, поэтому количество таких телевизоров в выборке будет равно 0.1 * 800 = 80.

Теперь мы можем найти долю телевизоров, удовлетворяющих стандарту в выборке из 800 телевизоров. Это будет равно 1 - доля телевизоров, не удовлетворяющих стандарту. Таким образом, доля телевизоров, удовлетворяющих стандарту, будет равна (800 - 80) / 800 = 0.9.

Теперь мы можем перейти к поиску границ, в которых с вероятностью 0.95 заключена доля телевизоров, удовлетворяющих стандарту, во всей партии. Для этого мы воспользуемся формулой доверительного интервала.

Для ПОВТОРНОЙ выборки:
1. Найдем стандартное отклонение выборки. Это можно сделать с использованием формулы: sqrt(p * (1 - p) / n), где p - доля телевизоров, удовлетворяющих стандарту в выборке, а n - количество телевизоров в выборке. Получаем sqrt(0.9 * 0.1 / 800) ≈ 0.01.
2. Затем, используя формулу доверительного интервала для пропорции, найдем границы доверительного интервала. Они будут равны: 0.9 - 1.96 * 0.01 и 0.9 + 1.96 * 0.01. Подсчет дает результат: [0.8784, 0.9216].

Таким образом, с вероятностью 0.95 доля телевизоров, удовлетворяющих стандарту, во всей партии для повторной выборки заключена в границах от 0.8784 до 0.9216.

Для БЕСПОВТОРНОЙ выборки мы будем использовать аналогичный подход:
1. Найдем стандартное отклонение выборки. Это снова можно сделать, используя формулу: sqrt(p * (1 - p) / n), где p - доля телевизоров, удовлетворяющих стандарту в выборке, а n - количество телевизоров в выборке. Получаем sqrt(0.9 * 0.1 / 800) ≈ 0.01.
2. Затем, используя формулу доверительного интервала для пропорции в бесповторной выборке, найдем границы доверительного интервала. Они будут равны: 0.9 - 1.96 * 0.01 и 0.9 + 1.96 * 0.01. Подсчет дает результат: [0.8784, 0.9216].

Таким образом, с вероятностью 0.95 доля телевизоров, удовлетворяющих стандарту, во всей партии для бесповторной выборки также заключена в границах от 0.8784 до 0.9216.
ПОКАЗАТЬ ОТВЕТЫ
tntemirlan tntemirlan  07.10.2020 12:02
Я не знаю на это ответ!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика