Из некоторой точки проведены к плоскости две наклонные, образующие с ней углы 45° и 60°. найдите длину меньшей наклонной, если расстояние между основаниями наклонных равно 8, а угол между их проекциями на плоскость равен 30°. нужно решение и ответ.

mariyasidorova1 mariyasidorova1    2   21.09.2019 20:01    7

Ответы
pziipzii pziipzii  27.08.2020 01:26
АВ^2=8^2=64=a^2+b^2-2abcos30=a^2+b^2-ab√3
(по т. косинусов)
мне нужно еще одно уравнение, связывающее а и b,
мне высота h
Из ΔАВА1  tg 60=h/a=√3;  h=a√3
из ΔАА1С  tg45=h/b=1; h=b;  a√3=b
подставлю в верхнее уравнение
a^2+(a√3)^2-a*a√3*√3=64
a^2+3a^2-3a^2=64
a=8
Чтобы найди длину меньшей наклонной АВ=a/cos60=8/(1/2)=16
Из некоторой точки проведены к плоскости две наклонные, образующие с ней углы 45° и 60°. найдите дли
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика