Данная задача на применение формулы Бернулли: если Вероятность P наступления события A в каждом испытании постоянна, то вероятность того, что событие A наступит k раз в n независимых испытаниях P n(k)= C k n P k(1−p ) n−k Согласно условия задачи вероятность наступления события P=4 18 = 2 9 , количество испытаний n=5, число успехов (неисправная деталь) k=2. Подставляем в формулу и получаем P 5(2)= C 2 5( 2 9
) 2(1− 2 9
) 5−2= 5! 2!3! ∗( 2 9
) 2∗( 7 9
) 3= 2∗5∗2 2∗ 7 3 9 5 =0,23 ответ: вероятность того, что в партии из 5 деталей будет 2 неисправные равна P=0,23
наступления события A в каждом испытании постоянна, то вероятность того,
что событие A наступит
k раз в
n независимых испытаниях
P
n(k)=
C
k
n
P
k(1−p
)
n−k
Согласно условия задачи вероятность наступления события P=4
18
=
2
9
,
количество испытаний n=5, число успехов (неисправная деталь)
k=2.
Подставляем в формулу и получаем
P
5(2)=
C
2
5(
2
9
)
2(1−
2
9
)
5−2=
5!
2!3!
∗(
2
9
)
2∗(
7
9
)
3=
2∗5∗2
2∗
7
3
9
5
=0,23
ответ: вероятность того, что в партии из 5 деталей будет 2 неисправные равна P=0,23