\frac{4}{3} +\frac{16}{16*9} +\frac{64}{81*27} +...+\frac{4^{n} }{n^{4}*3^{n} } +... . Исследовать на сходимость ряд

daniilzimin9 daniilzimin9    1   02.07.2020 20:55    1

Ответы
alena5378 alena5378  24.08.2020 23:46

\displaystyle\\\sum\limits^\infty_{n=1}\frac{4^n}{n^4*3^n}\\\\\\ \lim_{n \to \infty} \frac{a_{n+1}}{a_n}= \lim_{n \to \infty} \frac{\bigg(\dfrac{4}{3}\bigg)^{n+1} }{(n+1)^4*3^{n+1}}\cdot\frac{n^4*3^n}{\bigg(\dfrac{4}{3}\bigg)^{n} }= \lim_{n \to \infty} \frac{4n^4}{9(n+1)^4}=\\\\\\= \lim_{n \to \infty} \frac{(4n^4)'}{(9(n+1)^4))'}= \lim_{n \to \infty} \frac{16n^3}{36(n+1)^3}= \lim_{n \to \infty} \frac{(4n^3)'}{(9(n+1)^3)'} =\\\\\\

\displaystyle\\=\lim_{n \to \infty} \frac{12n^2}{27n^2+54n+27} = \lim_{n \to \infty} \frac{4n^2}{9n^2+18n+9}= \lim_{n \to \infty} \frac{4}{9+\dfrac{1}{n}+\dfrac{9}{n^2} }=\\\\\\=\frac{4}{9}1

По признаку Даламбера ряд расходится.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика