Используя принцип суперпозиции, найдите общие решения дифференциального уравнения y^{'''} - y^{'} = 2e^x + cosx

esina3010 esina3010    3   10.05.2021 19:10    0

Ответы
эаэаэа эаэаэа  10.05.2021 19:20

Рассмотрим дифференциальное уравнение, где a_0,a_1,\ldots,a_n — вещественные постоянные, a_0\ne0

a_0y^{(n)}+a_1y^{(n-1)}+\ldots+a_ny=0.\qquad \mathsf{(9)}

Пошаговое объяснение:

а общее решение

y_{\text{o.o}}=C_1e^{\widetilde{\lambda}x}+C_3xe^{\widetilde{\lambda}x}+C_3x^2e^{\widetilde{\lambda}x}+\ldots+C_kx^{k-1}e^{\widetilde{\lambda}x}+C_{k+1}e^{\lambda_{k+1}x}+ \ldots+C_ne^{\lambda_nx};

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика