Имеются две урны: в первой 3 белых и 2 черных шара, во второй 4 белых и 4 черных шара. Из 1-й урны во 2-ю перекладывают два шара. После этого из второй урны берут один шар. Найти вероятность того, что будет выбран белый шар.
а) Рассмотрим события – первый шар будет белым, – второй шар будет белым и найдём вероятность события , состоящего в том, что 1-й шар будет белым и 2-й белым.
По классическому определению вероятности: . Предположим, что белый шар извлечён, тогда в урне останется 10 шаров, среди которых 3 белых, поэтому:
– вероятность извлечения белого шара во 2-м испытании при условии, что до этого был извлечён белый шар.
По теореме умножения вероятностей зависимых событий:
Пошаговое объяснение:
Решение: всего в урне: 4 + 7 = 11 шаров. Поехали:
а) Рассмотрим события – первый шар будет белым, – второй шар будет белым и найдём вероятность события , состоящего в том, что 1-й шар будет белым и 2-й белым.
По классическому определению вероятности: . Предположим, что белый шар извлечён, тогда в урне останется 10 шаров, среди которых 3 белых, поэтому:
– вероятность извлечения белого шара во 2-м испытании при условии, что до этого был извлечён белый шар.
По теореме умножения вероятностей зависимых событий:
– вероятность того, что оба шара будут белыми.