Функцич задана формулой f(x)=x²-5x+6 при каких знаниях х 1)f(x)> _0 2)f(x)< 0 3)f(x)=6 4)f(x)=-6

Kioto5Tonaka Kioto5Tonaka    3   05.08.2019 21:50    1

Ответы
asalymbekov asalymbekov  14.08.2020 09:19
Графическое представление квадратичной функции - это парабола, в данном случае ветвями вверх.
Значения функции больше нуля находятся на графике выше оси ОХ,а меньше нуля - ниже оси ОХ.
Поэтому можно найти корни уравнения, при которых функция равна нулю, а потом видно, где функция положительна, а где отрицательна.
1) x²-5x+6 > 0.
Решаем уравнение x²-5x+6=0: 
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-5)^2-4*1*6=25-4*6=25-24=1;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√1-(-5))/(2*1)=(1-(-5))/2=(1+5)/2=6/2=3;x₂=(-√1-(-5))/(2*1)=(-1-(-5))/2=(-1+5)/2=4/2=2.
Это значит, что вершина параболы, а с ней и отрицательные значения функции лежат между значениями х = 2 и х =3.
При х меньше 2 и при х больше 3 значения функции положительны - это и есть ответ, f(x)>0: (2>x>3).

2) f(x)<0: (2<x<3).

3)f(x)=6. Для этого надо квадратный трёхчлен x²-5x+6 приравнять 6:
x²-5x+6 = 6,
x²-5x = 0,
х(х-5) = 0,
получаем 2 корня: х =0 и х = 5.

4)f(x)=-6.
 Для этого надо квадратный трёхчлен x²-5x+6 приравнять -6:
x²-5x+6 = -6.
x²-5x+12 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-5)^2-4*1*12=25-4*12=25-48=-23; Дискриминант меньше 0, уравнение не имеет корней.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика