Функция убывает при отрицательном значении производной (также допускается равенство нулю производной в отдельных точках, но не на сплошном интервале). Находим производную:
Необходимо потребовать, чтобы производная функции была неположительна:
Поскольку уравнение имеет отрицательный старший коэффициент, то неравенство будет выполняться для всех х при неположительном дискриминанте:
Решая неравенство по методу интервалов, получим:
При производная будет строго отрицательной, при а=0 и а=3 производная будет равняться нулю в отдельной точке. Во всех этих случаях исходная функция убывает на всей числовой прямой
Функция убывает при отрицательном значении производной (также допускается равенство нулю производной в отдельных точках, но не на сплошном интервале). Находим производную:
Необходимо потребовать, чтобы производная функции была неположительна:
Поскольку уравнение имеет отрицательный старший коэффициент, то неравенство будет выполняться для всех х при неположительном дискриминанте:
Решая неравенство по методу интервалов, получим:
При производная будет строго отрицательной, при а=0 и а=3 производная будет равняться нулю в отдельной точке. Во всех этих случаях исходная функция убывает на всей числовой прямой
ответ: