Если известен НОК то как найти его три числа?

Формулу или образец​

KseniaK0 KseniaK0    2   12.10.2020 20:45    0

Ответы
bolshakova2014 bolshakova2014  11.11.2020 20:45

Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК (24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42.

Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел.

Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел.

Пример 1. Найти НОК (35; 40).

Разложим числа 35 и 40 на простые множители.

35=5∙7, 40=2∙2∙2∙5 или 40=23∙5

Берем разложение большего числа 40 и дополняем его недостающими множителями. НОК (35; 40)=23∙5∙7=40∙7=280.

ответ: НОК (35; 40)=280.

Пример 3. Найти НОК (75; 120; 150).

Разложим числа 75, 120 и 150 на простые множители.

75=3∙52, 120=23∙3∙5, 150=2∙3∙52

Возьмем разложение большего числа 150 и дополним его двумя «двойками», так как в разложении числа 120 имеется три «двойки», а в разложении числа 150 – только одна.

НОК (75; 120; 150)=2∙3∙52∙2∙2=150∙4=600.

ответ: НОК (75; 120; 150)=600.

Вывод: при нахождении НОК выписывают произведение всех простых (различных) множителей, имеющихся в разложении этих чисел, причем, каждый из множителей берется с наибольшим из имеющихся показателей степеней.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика