Два треугольника подобны. Стороны первого треугольника равны 8; 4; 6. Наибольшая сторона второго треугольника равна 12. Определите наименьшую сторону второго треугольника. 8

7,5

6

9

magistr7818 magistr7818    3   30.05.2023 19:54    0

Ответы
РЕГИНА943 РЕГИНА943  30.05.2023 19:55

Два треугольника считаются подобными, если соответствующие им углы равны, а их стороны пропорциональны.

В данном случае, у нас есть первый треугольник со сторонами 8, 4 и 6. Мы хотим определить наименьшую сторону второго треугольника, при условии, что наибольшая сторона второго треугольника равна 12.

Для определения наименьшей стороны второго треугольника мы можем использовать пропорцию между соответствующими сторонами двух треугольников.

Пусть x будет наименьшей стороной второго треугольника. Тогда мы можем записать следующую пропорцию:

8/12 = 4/x

Теперь решим эту пропорцию, чтобы найти значение x:

8x = 12 * 4

8x = 48

x = 48 / 8

x = 6

Таким образом, наименьшая сторона второго треугольника равна 6.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика