Докажите тождество (см. вложение)


Докажите тождество (см. вложение)

Скороговорун35 Скороговорун35    2   22.06.2020 17:35    1

Ответы
Mausssslaaaa Mausssslaaaa  15.10.2020 14:40

Рассмотрим слагаемое kC_{n}^{k}, 1\leq k\leq n.

Это количество сочетаний из n элементов по k, повторенное столько же раз.

Выстроим одну из комбинаций из k элементов в строчку. Домножив на k, получим квадрат k\times k элементов. То есть kC_{n}^{k} — это множество квадратов. Теперь построим квадратную таблицу n\times n (см.рис)

В первой строке будут первые строчки большинства квадратов, кроме C_{n}^{0}. Во второй строчке уже не будет C_{n}^{1}, поскольку квадраты 1\times C_{n}^{1} целиком умещаются в первой строчке. И т.д. Причем будет отсутствовать вычитаемое nC_{n}^{n}, т.к. этот квадрат содержит все строчки.

Пусть искомая сумма S. Сложив все строчки, получим S=2^{n}n-nC_{n}^0-(n-1)C_{n}^1-...-C_{n}^{n-1}, поскольку C_{n}^i=C_{n}^{n-i}, перепишем сумму:

S=n2^n-S \Leftrightarrow S=2^{n-1}n


Докажите тождество (см. вложение)
ПОКАЗАТЬ ОТВЕТЫ
nail4iklatyopo nail4iklatyopo  15.10.2020 14:40

Пошаговое объяснение:в приложении


Докажите тождество (см. вложение)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика