Докажите, что сумма любых трех нечетных чисел являются четным числом. докажите, что сумма любых трех последовательных натуральных чисел кратна 3. . зараннее огромное .
Сумма любых 3-х нечетных чисел НЕ является четным числом! Напр.: 1+1+1=3, 3 - число нечетное
Любые 3 последовательных натуральных числа: пусть n одно число, следующее на 1 больше, т.е. (n+1), еще следующее больше на 2 единицы, т.е. (n+2). Тогда их сумма: n+(n+1)+(n+2)=3n+3=3(n+1) - делится на 3
Любые 3 последовательных натуральных числа: пусть n одно число, следующее на 1 больше, т.е. (n+1), еще следующее больше на 2 единицы, т.е. (n+2). Тогда их сумма: n+(n+1)+(n+2)=3n+3=3(n+1) - делится на 3