Докажите, что число 11^8n+4 + 4 составное

nik1ado21 nik1ado21    3   09.08.2019 15:40    0

Ответы
BashProcker BashProcker  04.10.2020 07:36
8n + 4 ≥ 12, n∈N

11 в любой степени заканчивается на 1

значит 11^(8n+4) заканчивается на 1

11^(8n+4) + 4 заканчивается на 5, значит все это число делится на 5 11^(8n+4)≠1, поэтому 11^(8n+4) + 4 ≠ 5, поэтому число делится как минимум на 1, на 5 и на себя

а значит число составное
ПОКАЗАТЬ ОТВЕТЫ
zaika787 zaika787  04.10.2020 07:36
8n + 4 > или = 12 ;
11^(8n + 4) + 4.
11 при любой степени заканчивается на 1.
11^(8n+4) + 4 = ...1 + 4 = ...5.
Число заканчивается на 5, это число имеет больше двух делителей, минимум три (само на себя, на единицу и на 5), то число составное.
ответ: доказано
ПОКАЗАТЬ ОТВЕТЫ