Пусть: 2019=n
(n-2)*n^3-(n-1)*(n-3)^3=
(n-1)*n^3 -n^3 -(n-1)*(n-3)^3=
= (n-1)*(n^3 - (n-3)^3) -n^3=
3*(n-1)* (n^2 +n*(n-3)+(n-3)^2) -n^3
3*(n-1)*(9+3*n*(n-3) )- n^3=
27*(n-1) +9*n*(n-1)*(n-3) -n*n^2=
27*(n-1) +n*( 9*(n-1)*(n-3) -n^2)=
18n+9n +n*(9*(n-1)*(n-3) -n^2)-27=
n*( 9*(n-1)*(n-3)+(9-n^2) ) +18n-27=
= n*(n-3)*(9*(n-1)-(n+3)) +9*(2n-3)=
n*(n-3)*(8n-12)+9*(2n-3)=
4*n*(n-3)*(2n-3) +9*(2n-3)=
(2n-3)*( 4n*(n-3)+9)= (2n-3)*(4n^2-12n+9)=(2n-3)^3
2n-3= 2*2019-3=4035
Вывод:
2017*2019^3 -2018*2016^3=4035^3 - куб натурального числа.
Пусть: 2019=n
(n-2)*n^3-(n-1)*(n-3)^3=
(n-1)*n^3 -n^3 -(n-1)*(n-3)^3=
= (n-1)*(n^3 - (n-3)^3) -n^3=
3*(n-1)* (n^2 +n*(n-3)+(n-3)^2) -n^3
3*(n-1)*(9+3*n*(n-3) )- n^3=
27*(n-1) +9*n*(n-1)*(n-3) -n*n^2=
27*(n-1) +n*( 9*(n-1)*(n-3) -n^2)=
18n+9n +n*(9*(n-1)*(n-3) -n^2)-27=
n*( 9*(n-1)*(n-3)+(9-n^2) ) +18n-27=
= n*(n-3)*(9*(n-1)-(n+3)) +9*(2n-3)=
n*(n-3)*(8n-12)+9*(2n-3)=
4*n*(n-3)*(2n-3) +9*(2n-3)=
(2n-3)*( 4n*(n-3)+9)= (2n-3)*(4n^2-12n+9)=(2n-3)^3
2n-3= 2*2019-3=4035
Вывод:
2017*2019^3 -2018*2016^3=4035^3 - куб натурального числа.