Доказать равенство с определения предела функции (по Коши или по Гейна)


Доказать равенство с определения предела функции (по Коши или по Гейна)

antoxor antoxor    2   25.10.2021 22:02    1

Ответы
mehan2018 mehan2018  25.10.2021 22:10

Пошаговое объяснение:

Пусть ε - сколь угодно малое положительное число. Мы докажем утверждение, если найдём такое число δ>0, если для всех x∈(3-δ; 3+δ) будет выполняться неравенство /(x²-9)/(x²+3*x)-2/<ε. Это неравенство равносильно двойному неравенству 2-ε<(x²-9)/(x²+3*x)<2+ε. Их общим решением является x∈(3/[1+ε];3)∪(3;3/[1-ε]). Так как число 3/(1+ε) "ближе" к 3, чем число 3/(1-ε), то возьмём δ=3-3/(1+ε)=3*ε/(1+ε). Таким образом, число δ найдено, а это и доказывает справедливость равенства.  

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика