Доказать, что заданная функция z=f(x,y) удовлетворяет данному уравнению

nnn0212 nnn0212    2   25.08.2019 02:10    2

Ответы
гуля429 гуля429  09.09.2020 01:55
Докажем так: найдем частные производные функции по x и y
z= \frac{x}{2x-3y}
\frac{dz}{dx} = \frac{(2x-3y)-x*2}{(2x-3y)^2} = \frac{-3y}{(2x-3y)^2}
\frac{dz}{dy} = -\frac{-3x}{(2x-3y)^2} = \frac{3x}{(2x-3y)^2}

x\frac{dz}{dx} =\frac{-3xy}{(2x-3y)^2}
y\frac{dz}{dy}=\frac{3xy}{(2x-3y)^2}

x\frac{dz}{dx}+y\frac{dz}{dy}=\frac{-3xy}{(2x-3y)^2}+\frac{3xy}{(2x-3y)^2}=\frac{0}{(2x-3y)^2}=0
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика