Доказать, что существует бесконечно много троек натуральных чисел (x,y,z), таких, что x^2–1 делится на y, y^2–1 делится на z и z^2–1 делится на х.

Jions Jions    2   04.12.2020 23:06    1

Ответы
valeria15queen valeria15queen  12.02.2021 19:32

Можно заметить, что 0 кратен любому целому числу. Тогда в качестве z возьмем 1. Если положить y = x + 1, то понятно, что x^2 - 1 делится на y.

Значит, тройки вида (x, x+1, 1), x \in \mathbb{N} удовлетворяют условиям, а их множество бесконечно, что доказывает утверждение.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика