Для функции y=f(x), где f(x)=
 \frac{2 { x }^{2} + 3x - 4}{3x + 3}
, найдите : г)f(2x'2+3x+5).
ответ должен быть таким :
 \frac{8 {x}^{4} + 24 {x}^{3} + 64 { x}^{2} + 69x + 61}{6 { x}^{2} + 9 x + 18}
решить . я не понимать как получаться вот так .​

nastyaivanova10k nastyaivanova10k    2   09.11.2019 12:43    0

Ответы
ВеДьМоЧкА11111 ВеДьМоЧкА11111  05.05.2020 13:04

вы изучали сложные функции?

F(G(x)) - ?

f(g(x)) = (2x² + 2x - 4)/(3x + 3)

В вашем случае f(g(x)) = (2g(x)² + 3g(x) - 4)/(3g(x) + 3)

g(x) = 2x² + 3x + 5

Проще говоря вместо переменной x надо подставить 2x² + 2x + 5

f(2x² + 3x + 5) = (2(2x² + 3x + 5)² + 3(2x² + 3x + 5) - 4)/(3(2x² + 3x + 5) + 3) = (2((2x²)² + 2*2x²*(3x + 5) + (3x+5)²) + 6x² + 9x + 15 - 4)/((6x² + 9x + 15) + 3) = ( 2(4x⁴ + 12x³ + 20x² + 9x² + 30x + 25) + 6x² + 9x + 11)/(6x² +9x + 18) =

= (8x⁴ + 24x³ + 58x² + 60x + 50 + 6x² + 9x + 11)/(6x² + 9x + 18) =

= (8x⁴ + 24x³ + 64x² + 69x + 61)/(6x² + 9x + 18)

очень похоже на Ваш ответ

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика

Популярные вопросы