Длина вектора a=корень из 3 , длина вектора b=6 , а длина суммы векторов a и b равна корень из 3 .найти косинус угла между векторами a и b .

maulee502owkszf maulee502owkszf    3   04.07.2019 06:00    0

Ответы
сопп сопп  27.07.2020 23:52
Вложение 
ПОКАЗАТЬ ОТВЕТЫ
martyanovvanya1 martyanovvanya1  27.07.2020 23:52
Ну для того, чтобы показать, что вы в курсе темы лучше решать через скалярное произведение векторов.
Поскольку вектор a и сумма векторов (a+b) имеют одинаковую длину, то образуют равнобедренный треугольник и для него верно равенство скалярного произведения равных сторон и вектора основания:
(\vec{a}+\vec{b})*\vec{b}=-\vec{a}*\vec{b}\\2\vec{a}\vec{b}=-\vec{b}^2\\2|\vec{a}|*|\vec{b}|*\cos \phi = -|\vec{b}|^2\\\cos \phi = -\frac{|\vec{b}|}{2|\vec{a}|}=-\sqrt{3}

А вот то, что косинус угла получается по модулю больше единицы как раз и говорит о том, что подобного треугольника не существует...

Длина вектора a=корень из 3 , длина вектора b=6 , а длина суммы векторов a и b равна корень из 3 .на
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика