Дано натуральное число. если к нему прибавить 3 то получи трехзначное число, сумма цифр которого в три раза меньше сумы цифр начального числа. найти начальное число. нужно решение. ответы и так знаю 108, 117, как закрыть вопрос решение уже нашел =)

olka11022000 olka11022000    2   12.07.2019 05:30    3

Ответы
Vikusya18101 Vikusya18101  06.08.2020 23:41
Было число АВС=100А+10В+С.

Добавили к нему 3,стало число: или 
а)  100А+10В+(С+3), или, если "перешли через десяток" (когда С больше или равно 7, например, 8+3=11), то
б)  100А+10(В+1)+(С+3-10).

 По условию, сумма цифр "стало" получается в 3 раза меньше, чем сумма цифр "было" ,  = А+В+С,
а) или А+В+С= 3(А+В+С+3),
б) или А+В+С= 3(А+В+1+С+3-10).  Проверьте на примере, когда 8+3=11. Цифра ДЕСЯТКОВ (В) увеличивается на 1, а цифра ЕДИНИЦ (С) уменьшается на 10. 

Теперь решаем. Сначала вариант а): 
2А+2В+2С=-9. Явно нереально, цифры-то ПОЛОЖИТЕЛЬНЫЕ.

Вариант в):
А+В+С= 3(А+В+С-6)
2А+2В+2С=18 и А+В+С=9
РЕАЛЬНЫЙ вариант.

 ПОМНИМ, что  "С больше или равно 7" - значит, сумма (А+В) должна быть меньше или равно 2, т.е. А и В - числа 0,1,2.
(А МОЖЕТ быть = 0,   т.к. не указано, что первоначальное число было ТРЕХЗНАЧНОЕ)

 Это могут быть числа   27, 108,117, 207. 
ТОЛЬКО четыре этих числа - ДРУГИХ вариантов НЕТ.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика