Дано: |a¯¯¯|=30,∣∣b¯¯∣∣=60 и угол между векторами a¯¯¯ и b¯¯ равен 60∘. Найдите (a¯¯¯,b¯¯).

dostovalovaanast dostovalovaanast    2   30.11.2021 16:19    76

Ответы
SuperArtem52 SuperArtem52  08.01.2024 21:06
Для решения данной задачи, нам понадобятся векторные операции, такие как скалярное произведение векторов и модуль вектора.

Скалярное произведение векторов a¯ и b¯ определяется следующим образом:

(a¯,b¯) = |a¯| * |b¯| * cos(θ)

где |a¯| и |b¯| - модули векторов a¯ и b¯ соответственно,
θ - угол между векторами a¯¯¯ и b¯¯.

В нашем случае, дано:
|a¯¯¯| = 30
|b¯¯| = 60
θ = 60∘.

Теперь мы можем подставить значения в формулу скалярного произведения:

(a¯,b¯) = 30 * 60 * cos(60∘)

cos(60∘) = 0.5, поэтому:

(a¯,b¯) = 30 * 60 * 0.5

(a¯,b¯) = 900

Таким образом, ответ на задачу составляет 900.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика