мы. При таком подходе задачу можно переформу-
лировать так: при каких значениях параметра a один из корней
квадратного трехчлена f (t) = t2 − 2(a + 1)t + a2 + 3a − 1 принад-
лежит интервалу (−1; 1), а второй корень расположен на числовой
оси вне этого интервала?
Из геометрической интерпретации решение последней задачи сво-
дится к решению неравенства
f (−1) · f (1) < 0 или (a2 + 5a + 2)(a2 + a − 2) < 0.
Решая последнее методом интервалов получим ответ.
мы. При таком подходе задачу можно переформу-
лировать так: при каких значениях параметра a один из корней
квадратного трехчлена f (t) = t2 − 2(a + 1)t + a2 + 3a − 1 принад-
лежит интервалу (−1; 1), а второй корень расположен на числовой
оси вне этого интервала?
Из геометрической интерпретации решение последней задачи сво-
дится к решению неравенства
f (−1) · f (1) < 0 или (a2 + 5a + 2)(a2 + a − 2) < 0.
Решая последнее методом интервалов получим ответ.