Дан клетчатый прямоугольник размером 5×15 клеток. Бабочка ползёт по границам этих клеточек из нижнего левого угла в правый верхний. Она не хочет проползти лишнего расстояния, поэтому ползёт исключительно вверх либо вправо. Какое наибольшее количество поворотов она может сделать, прежде чем закончит своё путешествие? butterfly-2460931_1280.png
ответ:
поворота (-ов).
4 задача на логику потому что 4 угла 4 поворота
Пошаговое объяснение:
Для начала построим путь, который она может проложить. Пусть | обозначает движение вправо, и -- движение вверх. Запишем эти шаги:
1. Из начальной точки бабочка движется две клетки вверх: --
2. Далее она движется четыре клетки вправо: ||||
3. Затем она идет две клетки вверх: --
4. И снова две клетки вправо: ||||
5. Последним шагом бабочка доползает до финиша, двигаясь две клетки вверх: --.
В итоге наш путь имеет вид: --||||--||||--
Теперь посчитаем количество поворотов, которые сделала бабочка. Поворотом будем считать смену направления движения, то есть когда она переходит из движения вправо на движение вниз, или из движения вверх на движение вправо.
На нашем пути бабочка сделала пять поворотов: два поворота вверх, два поворота вправо и последний поворот вверх.
Таким образом, ответ на задачу составляет пять поворотов.