Діагональ осьового перерізу циліндра дорівнює 10 см, а діаметр основи — 8 см. Визначте площу бічної поверхні циліндра.

даша33100 даша33100    1   23.06.2020 21:26    1

Ответы
SharovaYarosla SharovaYarosla  15.10.2020 14:46

Пошаговое объяснение:

Дано:

l= 10 cм

d= 8 cм

Sбіч.-?

Знайдемо радіус : r=d/2 = 8/2=4см

По теоремі Піфагора знайдемо висоту:

h^2+d^2=l^2

h^2 = l^2-d^2=10^2-8^2=100-64=36  h=6см

Площа бічної поверхні циліндра дорівнює:

Sбіч.=2п*R*h= 2п*4* 6 = 48п = 150,72 см2

ПОКАЗАТЬ ОТВЕТЫ
KseniaRogalina KseniaRogalina  15.10.2020 14:46

48см²

Пошаговое объяснение:

Діагональ перерізу, діаметр та апофема, це є прямокутний трикутник, де діагональ перерізу є гіпотенузою даного трикутника.

За теоремою Піфагора знайдемо висоту ціліндра(вона ж є апофема.)

H=√(10²-8²)=√(100-64)=√36=6 см висота ціліндра

R=D/2=8/2=4 см радіус ціліндра

Sбіч=2πRH=2π*4*6=48 см² площа бічної поверхні ціліндра.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика