Еще в начальной школе учат, как складывать и вычитать числа. Для того чтобы научиться это делать, необходимо выучить таблицу сложения и основанную на ней таблицу вычитания. Получается, первоклашка сможет из семнадцати вычесть девять или решить любой подобный пример. Однако завести в тупик его сможет пример обратного характера: как вычесть из девяти семнадцать. Примеры с отрицательными числами даются по школьной программе много позже, когда человек созревает до абстрактного мышления.
1)Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров с минусами будет четыре типа. Отрицательные числа внутри примера выделяются скобками для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17). 2) 1.Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак "+" меняется на противоположный, далее из большего (по модулю) числа "6" отнимается меньшее - "3", после чего ответу присваивается знак большего, то есть "-". 2. -3+6=3. Этот пример можно записать по-другому ("6-3") или решать по принципу "из большего отнимать меньшее и присваивать ответу знак большего". 3. -3+(-6)=-3-6=-9. При раскрытии скобок происходит замена действия сложения на вычитание, затем суммируются модули чисел и результату ставиться знак "минус". 3) 1.Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение. 2. -9-3=-12. Элементы примера складываются и ответ получает общий знак "-". 3. -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на "+", далее из большего числа отнимается меньшее и у ответа - знак большего числа. 4) Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с разными знаками ответу присваивается знак "минус", если числа с одинаковыми знаками - у результата всегда знак "плюс".1)-4*9=-36; -6:2=-3. 2)6*(-5)=-30; 45:(-5)=-9. 3)-7*(-8)=56; -44:(-11)=4.
1)Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров с минусами будет четыре типа. Отрицательные числа внутри примера выделяются скобками для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17).
2)
1.Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак "+" меняется на противоположный, далее из большего (по модулю) числа "6" отнимается меньшее - "3", после чего ответу присваивается знак большего, то есть "-".
2. -3+6=3. Этот пример можно записать по-другому ("6-3") или решать по принципу "из большего отнимать меньшее и присваивать ответу знак большего".
3. -3+(-6)=-3-6=-9. При раскрытии скобок происходит замена действия сложения на вычитание, затем суммируются модули чисел и результату ставиться знак "минус".
3)
1.Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.
2. -9-3=-12. Элементы примера складываются и ответ получает общий знак "-".
3. -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на "+", далее из большего числа отнимается меньшее и у ответа - знак большего числа.
4)
Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с разными знаками ответу присваивается знак "минус", если числа с одинаковыми знаками - у результата всегда знак "плюс".1)-4*9=-36; -6:2=-3.
2)6*(-5)=-30; 45:(-5)=-9.
3)-7*(-8)=56; -44:(-11)=4.