Число 10 представьте в виде суммы двух слагаемых так , чтобы сумма их кубов была наименьшей.

ilonadedyuhinaox7c9l ilonadedyuhinaox7c9l    2   24.07.2019 21:40    0

Ответы
aminoshkina aminoshkina  07.09.2020 19:40
Решение:
Составим на эту задачу модель в виде систем уравнений:
\left \{ {{x+y=10} \atop {x^3+y^3=S}} \right.
Выразим y через x с 1 уравнения:
\left \{ {{y=10-x} \atop {x^3+y^3=S}} \right.
Тогда мы можем сказать, что второе уравнение будет таким:
\left \{ {{x+y=10} \atop {x^3+(10-x)^3=S}} \right.
Т.о., наша сумма зависит от x. Т.е. мы составили зависимость S(x).
Так как в задаче требуется найти минимум, найдем точки экстремума функции S(x). Для этого найдем производную.
S'(x) = 3x^2 - 3(10-x)^2
Точки экстремума находятся там, где производная функции равна 0.
3x^2-3(10-x)^2=0 \\
x^2 - (10-x)^2 = 0 \\
(x + 10 - x)(x - 10 + x) = 0 \\
2x - 10 = 0 \\
x = 5
Из первого уравнения можем сказать, что y = 5 тоже. Т.о., минимальная сумма кубов числа должна равняться 5^3+5^3=125+125=250
ответ: 5 и 5 (сумма = 250)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика