Числа 2287, 2028, 1806 равные ненулевые остатки при делении на некоторое натуральное число n. найти n.

vinnnner vinnnner    3   14.08.2019 04:20    0

Ответы
whatareyoudoing whatareyoudoing  04.10.2020 17:50
Пусть 2287=a*n+k, 2028=b*n+k, 1806=c*n+k, где a,b,c,n - целые числа, 0<k<n.
Тогда 2287-2028=(a*n+k)-(b*n+k)
(a-b)*n=259
2028-1806=(b*n+k)-(c*n+k)
(b-c)*n=222
Отсюда следует, что 259 делится на n и 222 делится на n.
259=7*37, 222=37*6
НОД(259,222)=37 - максимально возможное n, причем в качестве n можно брать делители числа 37.
При n=1 числа 2287, 2028, 1806 дают нулевые остатки.
При n=37
2287=61*37+30
2028=54*37+30
1806=48*37+30
ответ: 37
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика