через вершину В правильного трикутника АВС проведено перпендикуляр SB до площини трикутника АВ=8 см, SB=4 см Знайти тук між площинами ABC i ACS

нор123456789 нор123456789    3   30.05.2023 02:03    0

Ответы
2508sanya 2508sanya  30.05.2023 06:00

Пошаговое объяснение:

Вирішення цієї задачі полягає в тому, щоб знайти довжину AC, яка вимірюється від вершини A до перетину перпендикуляра SB. Для цього застосовується теорема Піфагора: за умови, що трикутник ABC є прямокутним прямокутником ABC та гіпотенузой його є сторона AC, тоді: AB^2 + BC^2 = AC^2.

Отже, ми можемо вирахувати довжину AC, використовуючи теорему Піфагора: AC^2 = AB^2 + SB^2 = 8^2 + 4^2 = 64 + 16 = 80. Таким чином, довжина між площинами ABC та ACS складає AC = √80 = 8,94 см.

За властивостями правильного трикутника, ми знаємо, що всі кути дорівнюють 60 градусів.

Оскільки SB є перпендикуляром до площини ABC, то кут між SB та площиною ABC дорівнює 90 градусів.

Таким чином, кут між площинами ABC та ACS є сумою кута BAC трикутника ABC та кута SCA трикутника ACS. Оскільки трикутник ABC є прямокутним, то кут BAC дорівнює 60 градусів.

Для того, щоб знайти кут SCA, розглянемо прямокутний трикутник SBC. За теоремою Піфагора, ми можемо знайти довжину сторони AC: AC^2 = AB^2 + BC^2 = 8^2 + 4^2 = 80, звідки AC = √80.

Тоді, за теоремою синусів, ми можемо знайти кут SCA:

sin(SCA) = AC/AS

sin(SCA) = √80/4

SCA = arcsin(√80/4)

SCA ≈ 70.53 градусів

Отже, кут між площинами ABC та ACS дорівнює 60 + 70.53 ≈ 130.53 градусів.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика