Через дві твірні конуса, кут між якими дорівнює 60°, проведено переріз, ьплоща якого дорівнює 4√3 см2. Знайдіть кут між площиною перерізу й площиною основи конуса, якщо переріз відтинає від кола дугу 90°

Алена11д1 Алена11д1    1   31.05.2023 03:11    0

Ответы
максим1718 максим1718  31.05.2023 06:00

Площадь основы конуса дорівнює S = πr^2, де r - радіус кола основи. Так як переріз відтинає від кола дугу 90°, то його площа становить чверть площі кола:

4√3 = 1/4 * πr^2

r^2 = 16/π * √3

r = 2√(4/π) * √3 = 2√(12/π)

Тепер знайдемо висоту конуса. За теоремою Піфагора в прямокутному трикутнику з катетами r і h відношення між ними буде:

r^2 + h^2 = L^2, де L - площина перерізу.

h^2 = L^2 - r^2 = (2√3)^2 - 16/π * √3 = 12 - 16/π * √3

h = √(12 - 16/π * √3)

Тепер знайдемо косинус шуканого кута. За теоремою синусів в прямокутному трикутнику з катетами r і h і гіпотенузою L:

sin(90° - α) = r/L

sin α = h/L

cos α = √(1 - sin^2 α) = √(1 - (h/L)^2)

cos α = √(1 - (12 - 16/π * √3)/(2√3)^2)

cos α = √(1 - (4/π))

Відповідь: кут між площиною перерізу і площиною основи конуса дорівнює arccos(√(1 - (4/π))) радіан або близько 60,7°.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика