буду очень благодарна Даны вершины треугольника АВС , найти:
1) уравнение стороны АВ,
2) уравнение высоты СН
3) уравнение медианы АМ
4) точку N пересечения медианы АМ и высоты СН
5)уравнение прямой проходящей через вершину С параллельно стороне АВ
6) расстояние от точки С до прямой АВ
Если : А ( 1;6) В (-6;-4) С (-10;-1)

iIИльяIi iIИльяIi    1   14.11.2020 16:12    0

Ответы
Ulia200512 Ulia200512  14.12.2020 16:24

Даны вершины треугольника АВС: А ( 1;6) В (-6;-4) С (-10;-1).

1) уравнение стороны АВ. Вектор АВ = (-6-1; -4-6) = (-7; -10).

Уравнение: (x - 1)/(-7) = (y - 6)/(-10) или 10x - 7y + 32 = 0 в общем виде.

2) уравнение высоты СН.

У перпендикуляра к прямой в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.

СН это перпендикуляр к стороне АВ.

Уравнение СН: 7x + 10y + С = 0. Для определения слагаемого С подставим координаты точки С(-10; -1).

7*(-10) + 10*(-1) + С = 0, отсюда С = 70 + 10 = 80.

Получаем 7x + 10y + 80 = 0

3) уравнение медианы АМ.

Находим координаты точки М как середины стороны ВС.

М = (В (-6;-4) + С (-10;-1))/2 = (-8; -2,5). Точка А ( 1; 6).

Вектор АМ = (-8-1; -2,5-6) = (-9; -8,5).

Уравнение АМ: (x - 1)/(-9) = (y - 6)/(-8.5).

Или  в общем виде 17x - 18y + 91 = 0.

4) точку N пересечения медианы АМ и высоты СН

.Решаем как решение системы уравнений этих прямых:

{17x - 18y + 91 = 0| x7     =  119x - 126y + 637 = 0.

{7x + 10y + 80 = 0| x(-17) = -119x - 170y - 1360 = 0.

                                                   -296y - 723 = 0,

y = -723/296 ≈ -2,442568,   x = (-80 -10*-2,442568)/7 ≈ -7,93919.

5)уравнение прямой проходящей через вершину С параллельно стороне АВ.

С || АВ: 10 x - 7 y + 93 = 0.

Коэффициенты А и В сохраняются, для определения слагаемого С подставляются координаты точки С.

6) расстояние от точки С до прямой АВ

CC₂ = 2S/АВ = 4,9973147.

Площадь треугольника ABC      

S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 30,5.

Расчет длин сторон:    

АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √149 ≈ 12,2066.

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика