Поскольку четырехугольная пирамида правильная, то в основе пирамиды лежит квадрат. Все грани - равнобедренный треугольник.
Пусть SABCD - правильная четырехугольная пирамида. SO = 8 см, SA = SD = SC = SB = 10 см. O - точка пересечения диагоналей основания.
Из треугольника SAO (∠SOA = 90°): по т. Пифагора OA = √(SA²-SO²)=6 см, тогда диагональ АС = 2*AO = 12 см что и легко найти сторону основания AB = AC√2/2 = 6√2 см.
Площадь боковой поверхности вычисляется по формуле , где Ро - периметр основания, f - апофема.
Из вершины S проведем высоту к стороне АВ и назовём SK. Из треугольника SAK (∠SKA=90°): SK=√(SA²-AK²)=√(10²-(3√2)²)=√82 см
Пусть SABCD - правильная четырехугольная пирамида. SO = 8 см, SA = SD = SC = SB = 10 см. O - точка пересечения диагоналей основания.
Из треугольника SAO (∠SOA = 90°): по т. Пифагора OA = √(SA²-SO²)=6 см, тогда диагональ АС = 2*AO = 12 см что и легко найти сторону основания AB = AC√2/2 = 6√2 см.
Площадь боковой поверхности вычисляется по формуле , где Ро - периметр основания, f - апофема.
Из вершины S проведем высоту к стороне АВ и назовём SK. Из треугольника SAK (∠SKA=90°): SK=√(SA²-AK²)=√(10²-(3√2)²)=√82 см
Периметр основания: Po = 4*AB = 24√2 см
Окончательно имеем см²