4 цифры дадут 9999 варианто + 1 вариант (0000), т. е. 10000 вариантов.
Теперь разберемся с 32 буквами. Представим их трехзначные сочетания, как число, записанное в 32 ричной системе, где А соответствует цифре 0, а Я соответствует цифре 31 (да, да в 32-ричной системе может есть цифра 31!)
Тогда максимальное число из трех цифр в этой системе будет записано как ЯЯЯ.
Переведем это число в привычную нам десятичную систему счисления:
ЯЯЯ(32) = 31×32² + 31×32¹+31 = 31×(32²+32+1)=32767. По аналогии с 4 цифрами прибавим еще один вариант (ААА), соответствующий нулю в этой системе и получим, сочетание из 3-х букв 32 буквенного алфавита дает нам 32767+1=32768 вариантов. Каждому этому варианту может соответствовать любой из 10000 вариантов из 4 цифр. Поэтому для нахождения общего количества возможных вариантов их надо перемножить:
32768×10000=327680000 возможных вариантов номеров.
4 цифры дадут 9999 варианто + 1 вариант (0000), т. е. 10000 вариантов.
Теперь разберемся с 32 буквами. Представим их трехзначные сочетания, как число, записанное в 32 ричной системе, где А соответствует цифре 0, а Я соответствует цифре 31 (да, да в 32-ричной системе может есть цифра 31!)
Тогда максимальное число из трех цифр в этой системе будет записано как ЯЯЯ.
Переведем это число в привычную нам десятичную систему счисления:
ЯЯЯ(32) = 31×32² + 31×32¹+31 = 31×(32²+32+1)=32767. По аналогии с 4 цифрами прибавим еще один вариант (ААА), соответствующий нулю в этой системе и получим, сочетание из 3-х букв 32 буквенного алфавита дает нам 32767+1=32768 вариантов. Каждому этому варианту может соответствовать любой из 10000 вариантов из 4 цифр. Поэтому для нахождения общего количества возможных вариантов их надо перемножить:
32768×10000=327680000 возможных вариантов номеров.
Подробнее - на -
Если используются две буквы и три цифры, то число номеров
N2 = 32 * 32 * 1000
Если три буквы, то
N3 = 32 * 32 * 32 * 1000
Всего
N = N2 + N3 = 32 * 32 * 1000 + 32 * 32 * 32 * 1000 = 32* 32 * 33 * 1000 = 33792000