А) решите уравнение sin2x=cos(3π/2+x). б) найдите все корни этого уравнения, принадлежащие отрезку [3π/2; 5π/2].

ablyaev98 ablyaev98    3   18.06.2019 21:10    16

Ответы
marina22190 marina22190  15.07.2020 11:28
Sin2x=cos(3π//2+x) По формуле приведения sin2x=sinx Формула sin двойного угла 2sinx*cosx=sinx Разделим обе части на sinx так как sin и сos не могут одновременно равняться нулю. 2cosx=1 cosx=1/2 x=+-π/3+2πn sinx=0 x=πk При различных значениях n и k найди нужные корни))Надеюсь правильно!
ПОКАЗАТЬ ОТВЕТЫ