Хорошо, давай разберемся с этим математическим выражением.
Выражение "(6+корень 7)^2+(6-корень 7)^2" представляет собой сумму квадратов двух скобочных выражений.
1. Давай начнем с первого скобочного выражения (6+корень 7)^2:
Для раскрытия этой скобки, нам нужно умножить каждое слагаемое в скобке на себя.
(6+корень 7)^2 = (6+корень 7) * (6+корень 7)
2. Теперь перейдем ко второму скобочному выражению (6-корень 7)^2:
Тот же принцип, умножаем каждое слагаемое в скобке на себя.
(6-корень 7)^2 = (6-корень 7) * (6-корень 7)
Выражение "(6+корень 7)^2+(6-корень 7)^2" представляет собой сумму квадратов двух скобочных выражений.
1. Давай начнем с первого скобочного выражения (6+корень 7)^2:
Для раскрытия этой скобки, нам нужно умножить каждое слагаемое в скобке на себя.
(6+корень 7)^2 = (6+корень 7) * (6+корень 7)
Воспользуемся правилом раскрытия скобок:
(a+b) * (a+b) = a^2 + 2ab + b^2
Подставим значения "a = 6" и "b = корень 7":
(6+корень 7) * (6+корень 7) = 6^2 + 2 * 6 * корень 7 + (корень 7)^2
= 36 + 12 * корень 7 + 7
= 43 + 12 * корень 7
2. Теперь перейдем ко второму скобочному выражению (6-корень 7)^2:
Тот же принцип, умножаем каждое слагаемое в скобке на себя.
(6-корень 7)^2 = (6-корень 7) * (6-корень 7)
Воспользуемся правилом раскрытия скобок:
(a-b) * (a-b) = a^2 - 2ab + b^2
Подставим значения "a = 6" и "b = корень 7":
(6-корень 7) * (6-корень 7) = 6^2 - 2 * 6 * корень 7 + (корень 7)^2
= 36 - 12 * корень 7 + 7
= 43 - 12 * корень 7
3. Теперь сложим полученные результаты:
(6+корень 7)^2 + (6-корень 7)^2 = (43 + 12 * корень 7) + (43 - 12 * корень 7)
Обрати внимание, что 12 * корень 7 и -12 * корень 7 являются противоположными и уничтожают друг друга:
(43 + 12 * корень 7) + (43 - 12 * корень 7) = 43 + 43 + 12 * корень 7 - 12 * корень 7
= 86
Таким образом, ответ на заданный вопрос "(6+корень 7)^2+(6-корень 7)^2" равен 86.