Область определения функции описывает все возможные значения аргумента x, при которых функция f(x) имеет смысл и может быть вычислена. Для того чтобы найти область определения функции y=f(x) = x^3 - 9x + 40, нужно рассмотреть все ограничения, которые могут быть на аргумент x.
Уравнение функции f(x) = x^3 - 9x + 40 не содержит никаких дробей, корней из отрицательных чисел или иных значений, которые могли бы ограничивать область определения. Таким образом, можно сказать, что область определения функции f(x) = x^3 - 9x + 40 является множеством всех действительных чисел, то есть (-∞, +∞).
Давайте рассмотрим подробнее, как я пришел к этому ответу.
Функция f(x) = x^3 - 9x + 40 представляет собой полином третьей степени. Полиномы такого вида определены для всех действительных значений аргумента x.
Мы можем утверждать, что x^3, -9x и 40 определены для любого x, так как возведение в степень, умножение на константу и сложение/вычитание действительных чисел не ограничивают область определения функции.
Таким образом, мы можем утверждать, что функция f(x) = x^3 - 9x + 40 определена для любого x, а значит ее область определения равна (-∞, +∞).
В конечном итоге, область определения функции y=f(x) = x^3 - 9x + 40 является множеством всех действительных чисел, что значит, что функция определена для любого значения аргумента x.
Уравнение функции f(x) = x^3 - 9x + 40 не содержит никаких дробей, корней из отрицательных чисел или иных значений, которые могли бы ограничивать область определения. Таким образом, можно сказать, что область определения функции f(x) = x^3 - 9x + 40 является множеством всех действительных чисел, то есть (-∞, +∞).
Давайте рассмотрим подробнее, как я пришел к этому ответу.
Функция f(x) = x^3 - 9x + 40 представляет собой полином третьей степени. Полиномы такого вида определены для всех действительных значений аргумента x.
Мы можем утверждать, что x^3, -9x и 40 определены для любого x, так как возведение в степень, умножение на константу и сложение/вычитание действительных чисел не ограничивают область определения функции.
Таким образом, мы можем утверждать, что функция f(x) = x^3 - 9x + 40 определена для любого x, а значит ее область определения равна (-∞, +∞).
В конечном итоге, область определения функции y=f(x) = x^3 - 9x + 40 является множеством всех действительных чисел, что значит, что функция определена для любого значения аргумента x.