42 певца записывают песню, в которой есть несколько куплетов и припевов в определенном порядке. Каждый куплет поется ровно
6 певцами, а каждый припев — ровно 4 певцами. Каждый певец
может спеть только в одном куплете или припеве, в песне есть хотя
бы один куплет и хотя бы один припев, два куплета не идут сразу друг
после друга, никакой припев не может быть одновременно до и после
припевов. Необязательно использовать всех певцов для записи. Сколько
различных количеств певцов нужно для исполнения таких песен?
Распишите поподробней решение .
Разберем структуру песни. Обозначим куплет как К, а припев как П.
Пусть в песне есть k куплетов:
По условию, между куплетами может стоять 1 или 2 припева, а до первого и после последнего куплета - 0, 1 или 2 припева:
Определим минимальное и максимальное возможное число припевов для k куплетов.
Минимальное число припевов соответствует случаю, когда между всеми куплетами стоит по одному припеву, а припевы до первого куплета и после последнего куплета отсутствуют. Так как промежутков между k куплетами (k-1), то этому же числу и равняется минимальное число припевов:
Заметим, что для одного куплета формула даст число припевов, равное нулю. Но по условию в песне есть хотя бы один припев. Тогда можно записать:
Максимальное число припевов соответствует случаю, когда между всеми куплетами стоит по два припева, а также до первого куплета и после последнего куплета стоит по два припева. Тогда, максимальное число припевов:
Рассмотрим песни с одним куплетом.
Тогда:
Введем функцию , позволяющую по числу куплетов и припевов находить нужно число певцов. Можно ввести ограничение, например, о том, что при - функция не определена, так как по условию имеется 42 певца.
Рассмотрим песни с двумя куплетами.
Тогда:
Рассмотрим песни с тремя куплетами.
Тогда:
На этом шаге понятно, что последующие значения функции будут больше 42.
Рассмотрим песни с четырьмя куплетами.
Тогда:
Последующие значения функции больше 42.
Рассмотрим песни с пятью куплетами.
Тогда:
Все значения функции в этом случае больше 42.
Таким образом, найденные различные количества певцов:
10, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 - всего 16 значений
ответ: 16