30 . в правильную шестиугольную пирамиду высотой h вписан один конус, а около нее описан другой конус с радиусом r. найдите разность объемов этих конусов.

Kramar1 Kramar1    2   27.06.2019 19:20    0

Ответы
aleksaprincessa aleksaprincessa  02.10.2020 13:23
Объем конуса, вписанного в пирамиду
v = 1/3*pi*r^2*H
Объем конуса, описанного вокруг пирамиды
V = 1/3*pi*R^2*H
Высота H у них одинаковая и равна высоте пирамиды.
Вся разница в радиусах окружности, вписанной в 6-угольник и описанной вокруг 6-угольника.
Если сторона правильного 6-угольника равна а, то
R = a; r = a*√3/2 = R*√3/2
Объемы конусов
v = 1/3*pi*R^2*3/4*H
V = 1/3*pi*R^2*H
Разность этих объемов
V - v = 1/3*pi*H*R^2*(1 - 3/4) = 1/3*pi*H*R^2*1/4 = pi/12*H*R^2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика