√3-2x-x*2 - найдите область определения выражения

sergeyshevchukp06kj3 sergeyshevchukp06kj3    1   04.10.2019 15:50    0

Ответы
MFINN23 MFINN23  09.10.2020 19:57

Пошаговое объяснение:

Найдем область определения выражения √(3 - 2 * х - х ²). Областью определения выражения является выражения из под корня больше или равно 0. То есть получаем: 3 - 2 * х - х ² > = 0; - (x ^ 2 + 2 * x - 3) > = 0; x ^ 2 + 2 * x - 3 < = 0; x 2 + 2 * x - 3 = 0; Найдем дискриминант квадратного уравнения: D = b 2 - 4ac = 22 - 4·1·(-3) = 4 + 12 = 16; Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = (- 2 - √16)/(2 · 1) = (- 2 - 4)/2 = - 6/2 = - 3; x2 = (- 2 + √16)/(2 · 1) = (- 2 + 4)/2 = 2/2 = 1; Отсюда получим область определения выражения - 3 < = x < = 1.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика