2001²⁰⁰¹ 24²¹
9²⁰-7²⁰
8⁹⁹
3¹⁰¹
549⁴⁹
2²⁰¹⁵
1993¹⁹⁹³
777³³³+333⁷⁷⁷
найдите последнюю цифру​

ЛизаКрекер1 ЛизаКрекер1    3   18.06.2020 20:00    1

Ответы
erke22 erke22  15.10.2020 14:25

2001 ^ 2001 = 1

24 ^ 21 = 4

9 ^ 20 - 7 ^ 20 = 0  

8 ^ 99 = 2

3 ^ 101 = 3

549 ^ 49 = 9

2 ^ 2015 = 8

1993 ^ 1993 = 9

777 ^ 333 + 333 ^ 777 = 0  

Пошаговое объяснение:

2001 ^ 2001 = 1

т.к. 1 в любой степени оканчивается 1, т.к. 1 * 1 = 1 - только один вариант последней цифры

24 ^ 21 = 4

т.к. 4 в любой степени оканчивается только на 4 и на 6, при этом нечётная степень - на 4, а чётная - на 6 оканчивается, у нас 21 - нечётное число, выбираем именно 4 на конце

9 ^ 20 - 7 ^ 20 = 0  (1 - 1 =  0)

т.к. 9 в любой степени оканчивается только на 9 и на 1, при этом нечётная степень - на 9, а чётная - на 1 оканчивается, у нас 20 - чётное число, выбираем именно 1 на конце

т.к. 7 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 7, на 9, на 3 и на 1, при этом период выбора - четыре цифры, в показателе степени 20 помещается целых пять периодов по четыре цифры, выбираем четвёртый вариант цифры окончания (на 7, 9, 3, 1) - именно 1 на конце

и, наконец, при вычитании этих двух многозначных чисел, оканчивающихся на 1, имеем 1 - 1 = 0 в конце

Аналогично рассуждаем:

8 ^ 99 = 2

т.к. 8 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 8, на 4, на 2 и на 6, при этом период выбора - четыре цифры, в показателе степени 99 помещается после целых периодов ещё три цифры, выбираем третий вариант цифры окончания (на 8, 4,  2, 6) - именно 2 на конце

3 ^ 101 = 3

т.к. 3 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 3, на 9, на 7 и на 1, при этом период выбора - четыре цифры, в показателе степени 101 помещается после 25 целых периодов по четыре цифры ещё одна цифра, выбираем первый вариант цифры окончания (на 3, на 9, на 7 и на 1) - именно 3 на конце

549 ^ 49 = 9

т.к. 9 в любой степени оканчивается только на 9 и на 1, при этом нечётная степень - на 9, а чётная - на 1 оканчивается, у нас 49 - нечётное число, выбираем именно 9 на конце

2 ^ 2015 = 8

т.к. 2 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 2, на 4, на 8 и на 6, при этом период выбора - четыре цифры, в показателе степени 2015 помещается после целых периодов по четыре цифры ещё три цифры, выбираем третий вариант цифры окончания (на 2, на 4, на 8 и на 6) - именно 8 на конце

1993 ^ 1993 = 9

т.к. 3 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 3, на 9, на 7 и на 1, при этом период выбора - четыре цифры, в показателе степени 1993 помещается после целых периодов по четыре цифры ещё две цифры, выбираем второй вариант цифры окончания (на 3, на 9, на 7 и на 1) - именно 9 на конце

777 ^ 333 + 333 ^ 777 = 0   (7 + 3 = 0)

т.к. 7 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 7, на 9, на 3 и на 1, при этом период выбора - четыре цифры, в показателе степени 333 помещается после целых периодов по четыре цифры ещё одна цифра, выбираем первый вариант цифры окончания (на 7, на 9, на 3 и на 1) - именно 7 на конце

т.к. 3 в любой степени оканчивается уже в четырёх вариантах последней цифры - на 3, на 9, на 7 и на 1, при этом период выбора - четыре цифры, в показателе степени 777 помещается после целых периодов по четыре цифры ещё одна цифра, выбираем первый вариант цифры окончания (на 3, на 9, на 7 и на 1) - именно 3 на конце

и, наконец, выполняем сложение двух многозначных чисел, одно оканчивается на 7, другое - на 3, тогда имеем: 7 + 3 = 10, т.е. оканчивается на 0.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика