2. даны координаты вершин четырехугольника abcd: а (–6; 1), в (0; 5), с (6; –4), d (0; –8). докажите, что abcd – прямоугольник, и найдите координаты точки пересечения его диагоналей.

minohbli2207 minohbli2207    3   01.03.2019 19:20    153

Ответы
igordyatenko igordyatenko  23.05.2020 18:35

построим по этим координатам фигуру.проведем диагонали в этой фигуре.расчитаем координаты середины отрезков AC и BD.

x_{AC}=\frac{x_A+x_C}{2}=\frac{-6+6}{2}=0

y_{AC}=\frac{1-4}{2}=-1,5

(0;-1,5)

x_{BD}=\frac{0+0}{2}=0

y_{BD}=\frac{5-8}{2}=-1,5

(0;-1,5)

по свойству прямоугольника диагонали пересекаются в одной точке(0;-1,5) и делятся пополам.


2. даны координаты вершин четырехугольника abcd: а (–6; 1), в (0; 5), с (6; –4), d (0; –8). докажите
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика