Для начала, давайте определимся, что такое таблица истинности. Таблица истинности - это таблица, которая показывает все возможные значения логических переменных и результаты их сочетаний в логической формуле. Для каждой переменной в формуле создается столбец в таблице истинности, и для каждого сочетания значений переменных вычисляется результат.
Теперь к формулам под номерами 3-9. Я буду предполагать, что вам даны эти формулы, но если я ошибаюсь, пожалуйста, предоставьте их мне. Для наглядности я воспользуюсь алгебраическими переменными A, B, C и т.д., чтобы обозначить логические переменные.
3) ~(A ∧ B)
Таблица истинности для этой формулы будет выглядеть следующим образом:
Для каждого сочетания значений переменных A и B мы находим значение ~(A ∧ B). Все значения в столбце "~(A ∧ B)" вычисляются на основе правила отрицания (логическое НЕ) и конъюнкции (логическое И).
4) A ∨ (~B ∧ C)
Таблица истинности для этой формулы:
Для каждого сочетания значений переменных A, B и C мы вычисляем значение A ∨ (~B ∧ C). Все значения в столбце "A ∨ (~B ∧ C)" вычисляются на основе правил дизъюнкции (логическое ИЛИ) и конъюнкции.
5) (A → B) ∧ (~C ∨ D)
Таблица истинности для этой формулы:
Для каждого сочетания значений переменных A, B, C и D мы вычисляем значение (A → B) ∧ (~C ∨ D). Все значения в столбце "(A → B) ∧ (~C ∨ D)" вычисляются на основе правил импликации (логическое ЕСЛИ...ТО) и дизъюнкции.
6) ~(A ∨ B) ∧ (~A ∨ B)
Таблица истинности для этой формулы:
| A | B | A ∨ B | ~(A ∨ B) | ~A ∨ B | ~(A ∨ B) ∧ (~A ∨ B) |
|---|---|-------|----------|--------|--------------------|
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 |
Для каждого сочетания значений переменных A и B мы вычисляем значение ~(A ∨ B) ∧ (~A ∨ B). Все значения в столбце "~(A ∨ B) ∧ (~A ∨ B)" вычисляются на основе правил дизъюнкции, конъюнкции и отрицания.
7) (A ∨ B) → C
Таблица истинности для этой формулы:
Для каждого сочетания значений переменных A, B и C мы вычисляем значение (A ∨ B) → C. Все значения в столбце "(A ∨ B) → C" вычисляются на основе правил дизъюнкции, импликации и конъюнкции.
8) (A ∧ B) → (B ∨ C)
Таблица истинности для этой формулы:
Для каждого сочетания значений переменных A, B и C мы вычисляем значение (A ∧ B) → (B ∨ C). Все значения в столбце "(A ∧ B) → (B ∨ C)" вычисляются на основе правил конъюнкции, дизъюнкции и импликации.
9) (A ∨ ~B) ∧ ~(C ∧ D)
Таблица истинности для этой формулы:
Для каждого сочетания значений переменных A, B, C и D мы вычисляем значение (A ∨ ~B) ∧ ~(C ∧ D). Все значения в столбце "(A ∨ ~B) ∧ ~(C ∧ D)" вычисляются на основе правил конъюнкции, дизъюнкции и отрицания.
Надеюсь, это поможет вам понять и построить таблицы истинности для данных логических формул. Если у вас возникнут еще вопросы, не стесняйтесь задавать их.
удачи!
Для начала, давайте определимся, что такое таблица истинности. Таблица истинности - это таблица, которая показывает все возможные значения логических переменных и результаты их сочетаний в логической формуле. Для каждой переменной в формуле создается столбец в таблице истинности, и для каждого сочетания значений переменных вычисляется результат.
Теперь к формулам под номерами 3-9. Я буду предполагать, что вам даны эти формулы, но если я ошибаюсь, пожалуйста, предоставьте их мне. Для наглядности я воспользуюсь алгебраическими переменными A, B, C и т.д., чтобы обозначить логические переменные.
3) ~(A ∧ B)
Таблица истинности для этой формулы будет выглядеть следующим образом:
| A | B | ~(A ∧ B) |
|---|---|----------|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
Для каждого сочетания значений переменных A и B мы находим значение ~(A ∧ B). Все значения в столбце "~(A ∧ B)" вычисляются на основе правила отрицания (логическое НЕ) и конъюнкции (логическое И).
4) A ∨ (~B ∧ C)
Таблица истинности для этой формулы:
| A | B | C | ~B ∧ C | A ∨ (~B ∧ C) |
|---|---|---|--------|-------------|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |
Для каждого сочетания значений переменных A, B и C мы вычисляем значение A ∨ (~B ∧ C). Все значения в столбце "A ∨ (~B ∧ C)" вычисляются на основе правил дизъюнкции (логическое ИЛИ) и конъюнкции.
5) (A → B) ∧ (~C ∨ D)
Таблица истинности для этой формулы:
| A | B | C | D | A → B | ~C ∨ D | (A → B) ∧ (~C ∨ D) |
|---|---|---|---|-------|--------|-------------------|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Для каждого сочетания значений переменных A, B, C и D мы вычисляем значение (A → B) ∧ (~C ∨ D). Все значения в столбце "(A → B) ∧ (~C ∨ D)" вычисляются на основе правил импликации (логическое ЕСЛИ...ТО) и дизъюнкции.
6) ~(A ∨ B) ∧ (~A ∨ B)
Таблица истинности для этой формулы:
| A | B | A ∨ B | ~(A ∨ B) | ~A ∨ B | ~(A ∨ B) ∧ (~A ∨ B) |
|---|---|-------|----------|--------|--------------------|
| 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 |
Для каждого сочетания значений переменных A и B мы вычисляем значение ~(A ∨ B) ∧ (~A ∨ B). Все значения в столбце "~(A ∨ B) ∧ (~A ∨ B)" вычисляются на основе правил дизъюнкции, конъюнкции и отрицания.
7) (A ∨ B) → C
Таблица истинности для этой формулы:
| A | B | C | A ∨ B | (A ∨ B) → C |
|---|---|---|-------|-------------|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |
Для каждого сочетания значений переменных A, B и C мы вычисляем значение (A ∨ B) → C. Все значения в столбце "(A ∨ B) → C" вычисляются на основе правил дизъюнкции, импликации и конъюнкции.
8) (A ∧ B) → (B ∨ C)
Таблица истинности для этой формулы:
| A | B | C | A ∧ B | B ∨ C | (A ∧ B) → (B ∨ C) |
|---|---|---|-------|-------|-------------------|
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 |
Для каждого сочетания значений переменных A, B и C мы вычисляем значение (A ∧ B) → (B ∨ C). Все значения в столбце "(A ∧ B) → (B ∨ C)" вычисляются на основе правил конъюнкции, дизъюнкции и импликации.
9) (A ∨ ~B) ∧ ~(C ∧ D)
Таблица истинности для этой формулы:
| A | B | C | D | ~B | A ∨ ~B | C ∧ D | ~(C ∧ D) | (A ∨ ~B) ∧ ~(C ∧ D) |
|---|---|---|---|----|--------|-------|----------|--------------------|
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
Для каждого сочетания значений переменных A, B, C и D мы вычисляем значение (A ∨ ~B) ∧ ~(C ∧ D). Все значения в столбце "(A ∨ ~B) ∧ ~(C ∧ D)" вычисляются на основе правил конъюнкции, дизъюнкции и отрицания.
Надеюсь, это поможет вам понять и построить таблицы истинности для данных логических формул. Если у вас возникнут еще вопросы, не стесняйтесь задавать их.