Имеются шесть монет, среди которых две фальшивые. вес фальшивой монеты меньше веса подлинной. составьте алгоритм, позволяющий за три взвешивания на чашечных весах без гирь определить фальшивые монеты.

Glitchyyy Glitchyyy    1   02.08.2019 15:10    2

Ответы
ArtLeg ArtLeg  08.09.2020 06:43
1. Кладем на каждую чашу по 3 монеты. Весы будут либо в равновесии, либо одна чаша перевесит другую.
1а. Если весы будут уравновешены, то в каждой группе из 3 монет имеется фальшивая. 
2а. Проверяем первую группу из 3 монет. Кладем на каждую чашу весов по одной монете. Если весы будут в равновесии, то фальшивая монета - та, которая осталась; если фальшивая монета находится на весах, то взвешивание это покажет (чаша с фальшивой монетой будет выше).
3а. Такие же действия выполняем со второй группой из 3 монет. 
1б. Если при первоначальном взвешивании одна чаша перевесит другую, то обе фальшивые монеты находятся в одной группе монет (в той, которая легче).
2б. Кладем на каждую чашу весов по одной монете из выбранной (более легкой) группы монет. Если весы в равновесии, то обе монеты на весах фальшивые. Если одна чаша перевешивает другую, то фальшивые монеты - одна из тех, что находятся на весах (более легкая) и оставшаяся монета.
Таким образом, две фальшивые монеты можно определить максимум на три взвешивания, минимум - за два.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Информатика