3. гирьки есть чашечные весы без делений. для взвешивания груза также можно использовать гирьки, массы которых – целое число граммов. вам необходимо предложить набор гирек, при которого можно отмерить на весах любую массу, равную целому числу граммов от 1 до 40. гирьки можно класть на каждую чашку весов, чашки весов должны находиться в равновесии, при этом на одной из чашек весов должен находиться взвешиваемый груз. массы гирек в наборе могут повторяться. например, при трёх гирек массами 1, 1 и 5 граммов можно отмерить любую целочисленную массу от 1 до 7 граммов по следующей схеме (x – взвешиваемая масса): 1 грамм: x = 1, 2 грамма: x = 1 + 1, 3 грамма: x + 1 + 1 = 5, 4 грамма: x + 1 = 5, 5 граммов: x = 5, 6 граммов: x = 5 + 1, 7 граммов: x = 5 + 1 + 1. ответом на эту являются несколько целых чисел, записанных через пробел, – массы гирек, при которых можно отмерить любую целочисленную массу от 1 до 40. в наборе должно быть не более 8 чисел. числа в наборе могут повторяться. чем меньше гирек будет в предложенном наборе, тем больше вы получите, при условии, что, используя гирьки из данного набора, можно отмерить каждую целочисленную массу от 1 до 40.

lalka137 lalka137    2   09.09.2019 02:30    1

Ответы
danilddp02kr1 danilddp02kr1  07.10.2020 02:09
Пусть выбраны гирьки с массами M1, M2, ..., Mn и ими удалось массу X. 

Тогда имеет место равенство X = a1 * M1 + a2 * M2 + ... + an * Mn,
где ai = 0, если i-ая гирьке не участвовала в взвешиваниях, -1, если лежала на той же чаше весов, что и масса, которкю нужно отмерить, и +1, если на другой чаше весов. 

Каждый из коэффициентов принимает одно из трёх значений, тогда при гирек можно отмерить не более, чем 3^n различных масс. 3^3 < 40 + 1 < 3^4, значит, гирек нужно не менее четырёх. 

Докажем, что взяв гирьки с массами 1, 3, 9 и 27, можно отмерить любую массу от 1 до 40. Будем это делать по индукции, доказав, что при гирек 1, 3, 9, ..., 3^k можно отмерить любую массу от 1 до (3^k - 1)/2.

База индукции. При одной гирьки массой 1 действительно можно отмерить массу 1.
Переход. Пусть для k = k' всё доказано. Докажем и для k = k' + 1.
- Если нужно отмерить массу X <= (3^k' - 1)/2, то это можно сделать при гирек. 
- Пусть надо отмерить массу (3^k' - 1)/2 < X <= (3^(k' + 1) - 1)/2. Кладём на другую чашу весов гирьку массой 3^k'. Тогда остаётся нескомпенсированная масса |X - 3^k'| <= (3^k' - 1)/2, которую, по предположению, можно получить. Ура!

ответ. 1, 3, 9, 27.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Информатика