Координаты центра у нас уже известны. Нам остаётся найти лишь радиус данной окружности. Радиусом будет являться расстояние от центра окружности до оси Ох. Точка касания будет иметь координаты (-3; 0) (х = -3, т.к. центр окружности параллельным переносом переходит в точку на оси Ох и у = 0, т.к. точка лежит на оси Ох). Тогда r = √(-3 + 3)² + (2 - 0)² = √(0² + 4) = √4 = 2. Уравнение окружности имеет вид: (x - a)² + (y - b)² = r², где а и b - координаты центра, а r - радиус. ответ: (х + 3)² + (у - 2)² = 4.
Радиусом будет являться расстояние от центра окружности до оси Ох. Точка касания будет иметь координаты (-3; 0) (х = -3, т.к. центр окружности параллельным переносом переходит в точку на оси Ох и у = 0, т.к. точка лежит на оси Ох).
Тогда r = √(-3 + 3)² + (2 - 0)² = √(0² + 4) = √4 = 2.
Уравнение окружности имеет вид:
(x - a)² + (y - b)² = r², где а и b - координаты центра, а r - радиус.
ответ: (х + 3)² + (у - 2)² = 4.